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ABSTRACT 

This paper investigates the generation of realistic process data by utilizing adversarial networks to emulate actual steel process 
information. The objective is to create data resembling process data without discernible differences. Obtaining accurate process 
models for steel production is complex due to multiple challenges. Nevertheless, such data can prove invaluable for training 
operations personnel, simulating scenarios, testing software systems, and exploring novel control schemes. This research 
explores various generative modeling approaches to gain a deeper understanding of the constraints and practical implications 
of these models in steel environments, focusing on the application to a public dataset on continuous casting machine. 
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INTRODUCTION 

Artificial Intelligence (AI) is pervading almost any industry. The steel industry has been at the forefront of adopting new 
technologies to improve efficiency, reduce costs, and enhance product quality. In the last decades, there has been a growing 
interest in using AI to optimize steel production processes. Accurate process modeling for steel production is complex due to 
various challenges, including the complexity of the processes involved, variability in data, and the need for real-time monitoring 
and control. From those, data remains at the core of Industry 4.0 and AI in the steel industry. 

Raw data from the automation layer requires some preprocessing (manipulation and curation) to be usable.1 In particular, we 
sometimes need more data for process modeling or to train our AI models effectively, but a lack of data is present (missing 
values or missing samples). That's when we can leverage statistical data augmentation (dataset expansion) mechanisms to 
generate more data and increase diversity. Sagasti (2018), for example, considers eliminating data samples or features and 
simple imputation.1 Data augmentation techniques involve creating new data samples from the existing ones through various 
methods like geometric transformations, noise injection, and mixing samples. On the other hand, a closely related concept, 
synthetic data generation, involves creating entirely new data samples not present in the original dataset. This approach consists 
of learning the underlying data distribution and sampling new synthetic data points from it.  

Data augmentation is a powerful technique used to increase the size and diversity of datasets, which can be particularly useful 
in machine learning tasks involving steel processes. It can be used to improve the performance of machine learning models, 
especially in cases where a class imbalance exists; class imbalance creates bias (bad generalization), which is the main issue 
from the point of view of AI classification algorithms. However, managers and process engineers can employ this technique 
for simulation and decision-making purposes: assisting a digital twin, testing software systems (and even new control schemes), 
or training personnel on (faulty) simulated environments of the steel manufacturing operation; this can be particularly beneficial 
in facilitating decisions for less experienced operators, reducing errors, and enhancing operation accuracy, which ultimately 
leads to cost savings and CO2 emission reductions. Furthermore, synthetic data can help a steel company share its behavior to 
the public without revealing confidential industrial data, thus protecting the privacy of sensitive information.  

There are several approaches to data augmentation: 

• Distribution-based augmentation generates synthetic data samples based on the input data features' known or assumed
probability distributions. For steel processes, this could include modeling the distributions of various process
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