Aug 2025 I Iron & Steel Technology I AIST.org

Methanation as a Low-Risk, Low-Emission Pathway for the Integrated DRI-ESF-BOF Process Route — Part 1

subsequent hot metal production using an electric smelting furnace (ESF) as a decarbonization strategy. Little attention has been paid to the potential reuse of carbon-containing offgases when the DRI process is co-located with the ESF and an existing basic oxygen furnace (BOF) shop. Methanation of the CO-rich ESF and BOF offgases enables the recycling of carbon contained in these offgases back to the DRI plant as synthetic natural gas. Part 1 of this study focuses on methanation as an innovative way to use H₂ without modifying the operation of the DRI plant, reducing technical risk to the steel plant operator. In Part 2, an economic assessment of the new integrated DRI-ESF-BOF process route is presented.

Many steel producers are considering direct reduced ironmaking (DRI) with

Introduction

Direct reduced ironmaking (DRI) is being considered by many steelmakers as an alternative to the blast furnace (BF) to reach near-zero-emission goals by 2050. Fig. 1 shows Hatch's predicted change in steel production routes and the associated iron sources expected by 2050.

Such a rapid shift toward DRI production would strain the already limited supply of DR-grade iron oxide pellets. To meet global demand for green steel, BF-grade iron oxide pellets will need to be used in new DRI facilities.

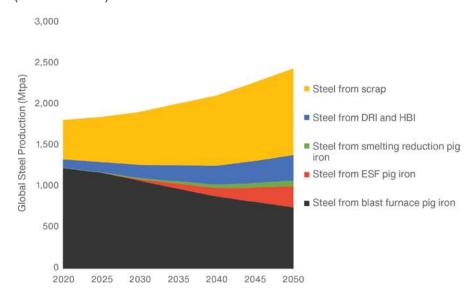
Two DR-based ironmaking strategies have emerged to decarbonize the steel value chain:

Authors

Takshi Sachdeva (top left), Engineer in Training, Hatch, Mississauga, Ont., Canada takshi.sachdeva@hatch.com

Kamal Joubarani (top right), Pyrometallurgy Engineer in Training, Hatch, Mississauga, Ont., Canada kamal.joubarani@hatch.com

Daysi Perez (center left), Hatch, Mississauga, Ont., Canada


Sa Ge (center right), Process Metallurgy Specialist, Hatch, Mississauga, Ont., Canada sa.ge@hatch.com

lan Cameron (bottom left), Principal Metallurgist, Ferrous, Hatch, Mississauga, Ont., Canada ian.cameron@hatch.com

Richard Elliott (bottom right), Process Metallurgist, Hatch, Mississauga, Ont., Canada richard.elliott@hatch.com

Figure 1

Global iron metallics use by iron- and steelmaking process route, 2020–2050 (Hatch estimate).

